
Tango: Harmonious Management and Scheduling for Mixed
Services Co-located among Distributed Edge-Clouds

Yicheng Feng
Tianjin University
Tianjin, China

yichengfeng@tju.edu.cn

Shihao Shen
Tianjin University
Tianjin, China

shenshihao@tju.edu.cn

Mengwei Xu
Beijing University of Posts
and Telecommunications

Beijing, China
mwx@bupt.edu.cn

Yuanming Ren
Tianjin University
Tianjin, China

renyuanming@tju.edu.cn

Xiaofei Wang∗
Tianjin University
Tianjin, China

xiaofeiwang@tju.edu.cn

Victor C.M. Leung
Shenzhen University
Shenzhen, China
vleung@ieee.org

Wenyu Wang
Paiou Cloud Computing

Co., Ltd.
Shanghai, China

wayne@pplabs.org

ABSTRACT
Co-locating Latency-Critical (LC) and Best-Effort (BE) services in
edge-clouds is expected to enhance resource utilization. However,
this mixed deployment encounters unique challenges. Edge-clouds
are heterogeneous, distributed, and resource-constrained, leading
to intense competition for edge resources, making it challenging to
balance fluctuating co-located workloads. Previous works in cloud
datacenters are no longer applicable since they do not consider the
unique nature of edges. Although very few works explicitly provide
specific schemes for edge workload co-location, these solutions fail
to address the major challenges simultaneously.

In this paper, we propose Tango, a harmonious management and
scheduling framework for Kubernetes-based edge-cloud systems
withmixed services, to address these challenges. Tango incorporates
novel components and mechanisms for elastic resource allocation
and two traffic scheduling algorithms that effectively manage dis-
tributed edge resources. Tango demonstrates harmony not only in
the compatible mixed services it supports, but also in the collabora-
tive solutions that complement each other. Based on a backwards
compatible design for Kubernetes, Tango enhances Kubernetes with
automatic scaling and traffic scheduling capabilities. Experiments
on large-scale hybrid edge-clouds, driven by real workload traces,
show that Tango improves the system resource utilization by 36.9%,
QoS-guarantee satisfaction rate by 11.3%, and throughput by 47.6%,
compared to state-of-the-art approaches.

CCS CONCEPTS
• Computer systems organization → Cloud computing; Real-
time system architecture; • Networks→ Cloud computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0843-5/23/08. . . $15.00
https://doi.org/10.1145/3605573.3605589

KEYWORDS
mixed service, resource management and scheduling, edge-clouds
ACM Reference Format:
Yicheng Feng, Shihao Shen, Mengwei Xu, Yuanming Ren, Xiaofei Wang∗,
Victor C.M. Leung, and Wenyu Wang. 2023. Tango: Harmonious Manage-
ment and Scheduling for Mixed Services Co-located among Distributed
Edge-Clouds. In 52nd International Conference on Parallel Processing (ICPP
2023), August 07–10, 2023, Salt Lake City, UT, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3605573.3605589

1 INTRODUCTION
Edge computing inherits the scalability of cloud computing and has
enabled the distribution of computing resources in massive, small
clusters, which provides more agile and in-proximity services to
end-users [30, 32, 38]. As a complementary solution to cloud com-
puting, edge computing is well-suited to support Latency-Critical
(LC) services [24], including virtual reality, smart factories, and
self-driving cars, due to its lower latency and ability to provide
better quality-of-service (QoS).

0:00 5:00 10:00 15:00 20:00 0:00 5:00 10:00 15:00 20:00

8

20

18

16

14

12

10

260

360

340

320

300

280

R
es

o
u

rc
e

u
ti

li
za

ti
o

n
 r

at
e

(%
)

R
es

p
o

n
se

 l
at

en
cy

 (
m

s)

(a) Resource usage of edge clouds. (b) Average latency of LC services.

Even in the afternoon

or evening peak,

Most LC requests need to

be responded to within

approximately 300ms.there are still a

lot of unused

resources.

Time Time
(hours) (hours)

Figure 1: Measurement of industrial edge-clouds.

Individually hosting LC services in the edge introduces severe
resource underutilization [29]. This is due to the high variability
of edge workloads over time, leading developers to over-provision
resources to handle peak loads. Our measurements on representa-
tive edge-clouds in the wild (Figure 1(a)) 1 indicate that the average
utilization of edge-cloud resources is below 20%. This presents sig-
nificant potential for improvements. One promising solution to
address the resource underutilization is to co-locate Best-Effort
(BE) services, such as data analytics and AI model training, with LC
services on the same edge-cloud, which has been widely adopted in
cloud datacenters, such as Google’s Borg [36]. This approach can
help exploit any unused resources by LC services [23, 26].
1PPIO Edge Cloud (www.ppio.cn) supports for the production dataset.

https://doi.org/10.1145/3605573.3605589
https://doi.org/10.1145/3605573.3605589

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Yicheng Feng et al.

Yet, co-locating LC and BE services on edges poses two unique
challenges. Firstly, unlike cloud datacenters with relatively abun-
dant resources, edge-clouds are usually heterogeneous and resource-
constrained, making competition for resources more intense [33].
Given the strict QoS targets of LC services, such as latency, as il-
lustrated in Figure 1(b)1note1, it is challenging to address severe
resource contention using elastic resource allocation approaches
that are applicable to edge-clouds [22, 40]. Secondly, edge resources
are distributed and scattered, while user requests’ loads are uneven
and fluctuating across geographical locations [24, 39]. This indi-
cates that supply-demand balance needs to be achieved through
workload scheduling [30, 37]. Collaborative management of decen-
tralized resources is the key to edge-clouds [24, 41]. If scattered
resources cannot be efficiently utilized by computation offloading
(i.e., traffic scheduling), it will result in load imbalance and poor QoS.
Therefore, the design of computation offloading schemes that effec-
tively manage edge resources while meeting service requirements
is challenging for edge workload co-location.

While cloud datacenters face similar resource allocation and
traffic scheduling challenges [5, 14, 27, 36], the nature of edges
has made these challenges much more complex, rendering tradi-
tional cloud datacenter solutions inapplicable. Firstly, resource-
constrained edge-clouds require aggressive repurposing and fast
provisioning [13], which makes elasticity solutions that rely on a
pool of "hot" workers overly rigid and expensive [12, 25]. Secondly,
simple static traffic policies used in cloud datacenters are unable to
efficiently manage scattered edge resources [15, 28]. For instance,
LC service requests may be assigned to an overloaded edge-cloud,
leading to poor QoS and load imbalance, even if other nearby edge-
clouds are relatively idle. Despite a few works providing specific
schemes for edge workload co-location [23, 26], these solutions fail
to address both major challenges simultaneously.

In this paper, we propose Tango, the first collaborative solution
that optimizes resource allocation and computation offloading for
edge co-location, aiming to improve resource utilization, through-
put, and QoS for LC services in edge-cloud systems.

Figure 2 illustrates the design of Tango, which addresses two
major challenges in edge-cloud systems using five modules com-
patible with Kubernetes (K8s) [6]. For flexible resource allocation,
Tango introduces theHarmonious Resource Management (HRM)
approach. It includes three modules: (1) resource usage regulation to
prioritize services during processing and offloading, (2) dynamic
vertical pod autoscaler (D-VPA) for rapid resource provisioning, and
(3) a QoS re-assurance mechanism for dynamic resource adjustment.
To efficiently manage decentralized edge resources, Tango employs
two traffic scheduling algorithms: (1) a distributed real-time
decision-making algorithm for network flows for LC service request
dispatching and (2) a centralized intelligent learning algorithm based
on Graph Neural Network (GNN) for BE service request scheduling
with adaptive adjustment capability.

Tango exhibits harmony in two respects. First, Tango supports
mixed services, ensuring that the QoS of LC services is given pri-
ority while the BE services are dynamically adjusted based on the
varying load of LC services. Second, the collaborative solutions
offered by Tango to address the challenges work together in har-
mony. Specifically, Tango’s HRM defines the resource priority using
two traffic scheduling algorithms, which ensures local scheduling

LC requests

BE requests

Master node

Worker node

Connected

by LAN

Connected by WAN

Return

results

Offload

requests

Worker node

BE Queue

LC Queue

Resource allocation

Waiting Dispatching CPU Memory Bandwidth

Module-4: Distributed LC Service Request

Scheduling (§5.2)

Module-5: Intelligent BE Service Request

Scheduling (§5.3)

Challenge2: How to design scheduling strategies to effectively manage

edge resources while meeting services requirements?

Traffic scheduling phase

Module-1: Resource Usage

Regulations (§4.1)

Module-2: D–VPA

Component (§4.2)

Module-3: Re-Assurance

Mechanism (§4.3)

Resource allocation phase

Request

dispatch

Edge cloud

Harmonious Resource Management (HRM)

Challenge1: How to allocate resources elastically

to address the intense resource contention for mixed services in edge-clouds?

Figure 2: An overview of Tango.

efficiency on each edge-cloud. Meanwhile, Tango’s two schedul-
ing policies optimize edge-clouds overall according to edge-cloud
resources maintained by HRM.

The main contributions of this paper are summarized as follows:
• We introduce Tango, a framework for harmonious management
and scheduling of edge workloads. Tango is designed to improve
system resource utilization and throughput while ensuring the
QoS of LC services by using a series of mechanisms and compo-
nents that are compatible with K8s for edge-clouds.

• We present HRM, a comprehensive solution designed for flexible
resource allocation in the edge. HRM includes resource usage
regulations, the D-VPA component, and the QoS re-assurance
mechanism. HRM supports resource segregation and targeted
allocation by adjusting resource provisioning elastically.

• We develop two scheduling algorithms for edge workload co-
location that efficiently manage decentralized edge resources: a
distributed network flow algorithm for LC service requests, and
a centralized intelligent learning algorithm based on GNN for BE
service requests.

• We conduct experiments on large-scale hybrid edge-clouds driven
by real workload traces, and compare our approach to the state-of-
the-art. The results show that Tango can improve system resource
utilization by 36.9% and QoS-guarantee satisfaction rate by 14.1%,
while further improving the throughput by 58.9%.

Open-source. Tango is available as an open-source project at
https://github.com/fwyc0573/Tango.

2 BACKGROUND AND RELATEDWORK
2.1 Container Orchestration Platforms
Many publicly-available container orchestration platforms (COPs),
such as Borg [36], K8s [6], Mesos [21], and Docker Swarm [10] offer

https://github.com/fwyc0573/Tango

Tango: Harmonious Management and Scheduling for Mixed Services Co-located among Distributed Edge-Clouds ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

comparable functionality for diverse workloads on large clusters,
but are not sufficiently suitable for edge workload co-location. For
instance, K8s relies on autoscaling and traffic scheduling mecha-
nisms which pose challenges for mixed services in edge-clouds.
Horizontal scaling [3], which adjusts the number of instances as
part of autoscaling, is relatively time-consuming for millisecond-
level LC services due to long container start-up time. While K8s’s
vertical scaling component [11] can modify the configuration of
instance resources, it causes downtime since it relies on a delete-and-
rebuild approach. In terms of traffic scheduling, K8s only provides
simplistic policies such as round-robin [9], which fail to consider
service priority or the heterogeneous nature of the edge.

2.2 Resource Allocation
There have been several works that focus on resource allocation in
co-location scenarios, including PROMPT [29], Borg [36], Edgeiso [26],
Koordinator [5], and Twig [27]. These works use a combination
of hardware and software mechanisms to isolate and allocate re-
sources, providing some relief from the resource allocation chal-
lenge. However, these works lack attention to the unique nature
of edge resources, and do not effectively address the challenge
of organizing scattered edge resources through traffic scheduling
strategies. In addition, resource reservation is a typical solution
to address fluctuating traffic loads and achieve resource elasticity
in cloud datacenters [12, 43]. For example, Ambati et al. [12] pro-
posed a framework that maintains an extra pool of transient virtual
machines for requests. However, these solutions are too expensive
for resource-constrained edges and have a large time overhead for
resource provisioning, which can be fatal for LC service requests.

2.3 Computation Offloading
Many of the traffic scheduling policies used in cloud datacenters
today, such as Maglev [15] and Ananta [28], adopt simple static
strategies, which may not be suitable for edge co-location scenarios.
These policies fail to address service prioritization and the hetero-
geneity of edge-clouds. While some existing work on edge-clouds
involves well-designed computation offloading policies, they only
optimize QoS for LC services or throughput for BE services and can-
not address the co-location scenario [19, 22, 31, 35]. Moreover, many
of these works are not designed to integrate with COPs or other ex-
isting cloud infrastructures. Although some edge co-location works
include computation offloading strategies [23], the challenge of
resource allocation has not been adequately addressed.

3 TANGO OVERVIEW
We present the architecture design of Tango in Figure 3. Tango is
designed with backward compatibility in mind and extends K8s
with automatic scaling and traffic scheduling capabilities that are
specifically optimized for edge-clouds. The main components of
Tango are as follows:

• LC traffic dispatcher . Tango runs a LC traffic dispatcher ➊ on
each master node to dispatch LC service requests from users.
Using a custom distributed scheduling algorithm (§5.2), the dis-
patcher makes real-time decisions based on information from
the state storage ➋. The state storage not only stores the status of
nearby edge-clouds but also periodically receives metrics, such as

Master node

Standard components

Tango components

Dispatch Worker node

Dispatch

Prometheus

State storage

QoS
re-assurer

3

2

5QoS
detector

4

K8s

API

server

1 LC traffic

dispatcher

R
ea

l
w

o
rk

lo
a

d
tr

a
ce 6

BE traffic

dispatcher

K
u

b
el

et Con-

tainerd/

Dockerd

D
-V

P
A

Figure 3: Tango architecture.

resource usage, round-trip time, and the QoS, which are pushed
by Prometheus [8] and the QoS detector ➍, respectively.

• BE traffic dispatcher . To provide centralized scheduling of
BE service requests (§5.3), a BE traffic dispatcher ➌ is deployed
on the master node of the central edge-cloud cluster. 2 While
the LC traffic dispatcher prioritizes request QoS, the BE traffic
dispatcher receives BE service requests forwarded from other
edge-clouds and optimizes system throughput through central-
ized decisions at the cost of transmission latency. Both LC and
BE traffic dispatchers follow resource usage regulations (§4.1) to
balance mixed workloads.

• QoS re-assurer . Each master node deploys a QoS re-assurer ➎,
which receives QoS of LC requests from the QoS detector ➍ and
calculates the amount of resource adjustment based on the status
in the past period, encapsulating it in the packet of scheduled
requests, in line with the QoS re-assurance mechanism (§4.3).

• D-VPA component. The D-VPA component ➏ (§4.2) enables
elastic resource allocation without the need for a delete-and-
rebuild approach used in the current K8s-VPA plugin [11]. It
achieves this by dynamically controlling resource limits of pods
and containers, facilitating vertical scaling without disruptions.

Operation. Next, we provide a high-level description of the op-
eration of Tango and how it aligns with the three-step dispatch–
allocate–adjust process: (1) Upon receiving service requests, the
master node places them into either the LC or BE scheduling queues.
LC service requests are promptly dispatched to target nodes by
the LC traffic dispatcher of each cluster. In contrast, BE service re-
quests are uniformly forwarded to the central cluster for centralized
dispatching by its BE traffic dispatcher. (2) Once dispatched, the
cluster forwards requests to target nodes. On the worker node, the
D-VPA component allocates resources (minimum requirements)
to containers by dynamically modifying the resource limits corre-
sponding to the service request type. After processing the requests,
the allocated resources are reclaimed. (3) The QoS detector adjusts
the minimum amount of resources requested from the D-VPA com-
ponent based on the QoS of LC service requests. Meanwhile, the
D-VPA component dynamically adjusts the resource allocation of
containers, following the regulations of resource usage.

4 DESIGN OF HRM
HRM is an elastic resource management solution that targets edge-
clouds. It consists of the D-VPA component (§4.2) responsible for
flexible resource allocation at a low level. It also includes regulations

2 In our scenario, Tango selects an edge-cloud cluster that is (i) geographically central
and (ii) more resource-rich for centralized scheduling of BE service requests.

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Yicheng Feng et al.

We implement the D-VPA component to solve the delete-and-rebuild resource

modification problem for K8s’ VPA, allowing for dynamic adaptation.

K8s VPA-plug’s delete-and-rebuild resource scaling method:

Tango D-VPA’s dynamical resource scaling method:

Native

K8s

Tango

Native

K8s

Tango

BE

Idle resources

BE

BE

BE

BE services maximize
the use of idle resources

service pod

D-VPA

dynamically scale

CPU RAM …

delete and recreate

pod67f7df...

new pod82a9gd...

resource

expand

pod67f7df...

service pod

pod67f7df...
CPU

RAM
…

service pod

pod67f7df...
container

CPU RAM …

CPU
RAM

…

service pod

Idle
Phase

LC

LC

LC

BE

BE

Idle res

LC services will preempt
resources when necessary

Busy
Phase

LC

LC

BE

BE

Native

K8s

Tango

(a) (b)

Tango

Native plugin

Figure 4: Resource usage regulations (a) and D-VPA (b).

of resource usage (§4.1) and the QoS re-assurance mechanism (§4.3)
that guide and adjust D-VPA’s resource allocation.

4.1 Resource Usage Regulations
Tomanage resource allocation formixed services effectively through-
out the scheduling and processing phases, Tango implements spe-
cific regulations. In conjunction with the QoS level mechanism of
K8s, LC services are assigned a higher priority than BE services.

The resources available for scheduling and processing LC service
requests include both idle resources and resources currently being
used by BE services, with preference given to the former. As shown
in Figure 4(a), the BE services aim to maximize idle resources to
speed up request processing and improve throughput. If the current
idle resources in edge-clouds are insufficient to meet the minimum
requirements of pending LC service requests, preemption is allowed.
LC service containers receive shares directly from BE services for
compressible resources, such as CPU and bandwidth. However,
incompressible resources, such as memory and disk, are freed up
by evicting and restarting running BE services at a later time.

4.2 D-VPA Component
The nature of edge-clouds being resource-constrained makes it
important to efficiently utilize resources and quickly allocate them.
Therefore, expensive solutions such as pre-reserving resources (by
setting high resource limits in advance) or solutions that have high
start-up latency such as real-time instance creation are likely not
suitable. 3 Previous research [40] has shown a significant difference
between actual resource utilization and the utilization presented
by the cluster manager, resulting in resource wastage.
Pain Points. The resource allocation settings of native K8s are
only involved in initialization, meaning that the K8s resource list
(such as CPU or memory) cannot be modified while containers
are running. Even the K8s-VPA [11] plugin, specifically designed
for vertical expansion and contraction, uses a delete and rebuild
approach that interrupts the running container. This may be due to
the fact that K8s currently does not support runtime modification
of resources for pods (i.e., the smallest unit of K8s) and containers.
K8s CGroup Control. As shown in Figure 4(b), Tango’s D-VPA
provides a dynamic resource scaling solution through the addition
of an extra control flow to K8s Control Group (CGroup), instead
of using the disruptive delete-and-rebuild method. The modifica-
tion process involves the pod-level CGroups in addition to the

3 Tango’s scenario aligns with the edge-cloud enterprise discussed in §1, where fixed
types of containerized applications, such as cloud rendering, audio, and video, run
continuously on the edge-clouds to serve users with specific requirements. The actual
resource utilization of containers is influenced by fluctuating workloads.

We implement the D-VPA component to solve the delete-and-rebuild resource

modification problem for K8s’ VPA, allowing for dynamic adaptation.

Tango D-VPA

Tango traffic

dispatcher

Pod

container

Tango QoS

re-assurer

Kubepods CGroup

Qos level CGroup

Pod level CGroup

Container level ...

/sys/fs/cgroup/cpu,c

puaact/kubepods/bu

rstable/pod67f7df…

/sys/fs/cgroup/cpu,c

puaact/kubepods/bu

rstable/pod67../cc13

fc77c

cpu.shares

cpu.cfs_quota_us

cpu.cfs_period_us

….

…

K8s VPA-plug’s delete-and-rebuild resource scaling method:

Tango D-VPA’s dynamical resource scaling method:

K8s CGroup

Figure 5: D-VPA’s control flow to K8s CGroups.

container-level CGroups (Figure 5), and the modifications must be
sequential to prevent failure. Specifically, for expansion cases, the
pod-level CGroups are modified first, followed by the container-
level CGroups. For shrinking cases, the order is reversed. D-VPA
allocates the minimum resources required for each service request
to be processed and reclaims them upon completion. The resource
allocation is dynamically adjusted based on resource usage regula-
tions and the QoS assurance mechanism.

4.3 QoS Re-Assurance Mechanism
The volatility of system load has a significant impact on the latency
of LC service requests. To address this issue, Tango implements a
re-assurance mechanism that can mitigate fluctuations in the QoS.
The processing latency of LC service requests on each worker node
is collected within a time window of 100ms. We introduce the slack
score 𝛿𝑘 (𝑛𝑖

𝑏
), defined as 1 − b𝑘

𝑖
/𝛾𝑘 , where b𝑘

𝑖
represents the tail

latency (95𝑡ℎ percentile) of service 𝑘 within a time window at node
𝑛𝑖
𝑏
. The QoS target of service 𝑘 is denoted by 𝛾𝑘 .
A negative slack score indicates that the request latency fails to

meet the QoS target, and the severity of the violation increases as
the slack score decreases. Based on the slack score concept, we em-
pirically establish two thresholds (𝛼 and 𝛽) and classify three levels
of quality performance (excellent, stable, and poor). Algorithm 1
depicts the resource adjustment strategies for different performance
levels. Note that to minimize resource perturbations, the mecha-
nism operates at a high frequency with a small proportion, ensuring
that resource adjustments are timely and smooth.

5 DESIGN OF SCHEDULING ALGORITHMS
In this section, we formally present the system model of our edge-
cloud scenario and describe the optimization objective. We then
introduce two traffic scheduling algorithms, one tailored for LC
service requests and the other for BE service requests.

5.1 Problem Formulation
5.1.1 Edge-Cloud System.

An edge-cloud system typically consists of multiple edge-cloud
clusters. Each cluster comprises numerous edge-clouds that can

Algorithm 1: The re-assurance mechanism in HRM

1 for each worker node do in parallel
2 for each service 𝑘 do in parallel
3 if 𝛿𝑘 (𝑛𝑖

𝑏
) < 𝛼 then

4 Increase the minimum requested resource amount for
service 𝑘 on node 𝑛𝑖

𝑏
;

5 else if 𝛿𝑘 (𝑛𝑖
𝑏
) > 𝛽 then

6 Decrease the minimum requested resource amount for
service 𝑘 on node 𝑛𝑖

𝑏
;

Tango: Harmonious Management and Scheduling for Mixed Services Co-located among Distributed Edge-Clouds ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

𝒢𝑘 : Requests can be processed

𝒳𝑖
𝑘 = 𝑟𝑖 , ava

𝑐 ,𝑘 ,𝑟𝑖 ,ava
𝑚 ,𝑘 , 𝑡𝑖

𝑘

𝒴𝑖 ,𝑗 = 𝑡𝑖 ,𝑗
delay

, 𝑐𝑖 ,𝑗

መ𝒢𝑘
′

: Requests need to be queued

𝒳𝑖
𝑘 = 𝑟𝑖 ,max

𝑐 ,𝑘 , , 𝑟𝑖 ,max
𝑚 ,𝑘 ,𝑡 ′ 𝑖

,𝑘

𝒴𝑖 ,𝑗 = 𝑡𝑖 ,𝑗
delay

, 𝑐𝑖 ,𝑗

LC
requests

MemoryCPU

MemoryCPU

MemoryCPU

Waiting

MemoryCPU

Waiting

Define nodes based on
available resources

Define nodes based on
maximum resources

O
n

e-tim
e d

ecisio
n

 fo
r th

e
d

y
n

a
m

ic n
u

m
b

er o
f req

u
ests

Sorting
function

𝒔𝒊∈𝓢
𝒌

𝒈 −𝒕𝒊
𝒌

The number

of

of requests

Master
nodes

𝑡𝑖
𝑘, ∀𝑘 ∈ 𝒦

All the
rest of the
requests

Distributed Service request Scheduling algorithm for LC requests (DSS-LC)

Figure 6: Distributed LC service request scheduling.
function as either master nodes or worker nodes. Here, we provide
a detailed explanation of the concepts involved:
• Edge-Cloud cluster. We define the set of edge-cloud clusters as
B, where 𝑏 ∈ B represents a single cluster. An edge-cloud cluster
𝑏 consists of𝑚𝑏 edge-clouds. These edge-clouds are connected
through a Local Area Network (LAN), and the clusters themselves
are connected via a Wide Area Network (WAN).

• Master nodes. Incoming requests are received by the master
node, which acts as an edge access point (eAP). In addition, the
master node serves as a controller and decision maker within the
edge-cloud cluster, with at least one present in number.

• Worker nodes. Theworker node executes container instances. It
processes service requests forwarded by the master node and re-
turns results. Typically, an edge-cloud cluster comprises multiple
worker nodes.

5.1.2 System Optimization Objective.

The optimization objective of the system is determined by two
factors: (i) the QoS-guarantee satisfaction rate, which is the
percentage of completed LC service requests that meet the QoS
targets (tail latency being the QoS metric); and (ii) the long-term
throughput, which is the total number of completed BE service
requests over time.

Concretely, we define the optimization objective𝑈 for the edge-
cloud system as maximizing the rate of QoS-guarantee satisfaction
𝜙 =

∑+∞
𝑡=0

∑
𝑏∈B 𝑞𝑏,𝑡/

∑+∞
𝑡=0

∑
𝑏∈B 𝑄𝑏,𝑡 for LC service requests while

improving the long-term throughput 𝜙 ′ =
∑+∞
𝑡=0

∑
𝑏∈B 𝑞′

𝑏,𝑡
for BE

service requests as much as possible. The number of LC service
requests arriving at edge-cloud cluster 𝑏 at time 𝑡 is denoted by
𝑄𝑏,𝑡 , and 𝑞𝑏,𝑡 is the number of completed request in 𝑄𝑏,𝑡 that meet
the QoS targets. Similarly, the number of completed BE service
requests at time 𝑡 in the edge-cloud cluster 𝑏 is denoted by 𝑞′

𝑏,𝑡
. The

optimization objective𝑈 of Tango can be expressed as:

max{
�̂�𝑏,𝑡 :𝑏∈B

}
,�̃�𝑡

𝑈 = max
+∞∑︁
𝑡=0

∑︁
𝑏∈B

𝑞′𝑏,𝑡 max
∑+∞

𝑡=0
∑

𝑏∈B 𝑞𝑏,𝑡∑+∞
𝑡=0

∑
𝑏∈B 𝑄𝑏,𝑡

, (1)

where {𝜋𝑏,𝑡 : 𝑏 ∈ B} denotes the LC-oriented policy deployed on
edge-cloud cluster𝑏 and �̃�𝑡 denotes the BE-oriented policy deployed
on the central edge-cloud cluster.

5.2 Request Scheduling of LC Services
One key intuition in scheduling LC service requests is to use a
distributed approach, where quick scheduling decisions are made

once requests are received by an eAP. Previous research [20] shows
that distributed scheduling significantly reduces time overhead in
edge clouds, which is crucial for LC service requests. Our edge-cloud
production dataset reveals a round-trip time from the edge-cloud
to the central cluster can exceed 97ms, which is very detrimental to
the QoS (close to 30% of the average QoS targets). This is also one of
the reasons why we choose not to use centralized scheduling for LC
requests. Consequently, we formulate the scheduling problem as a
Multi-Commodity Network Flow (MCNF) problem, and implement
the Distributed Service request Scheduling algorithm for LC
service requests (DSS-LC), as shown in Figure 6 and Alg. 2.

5.2.1 Multi-commodity Network Flow Problem.

The DSS-LC simultaneously creates a graph G𝑘 for each LC
request type 𝑘 ∈ K . Specifically, for a given request type 𝑘 ∈
K , the corresponding graph G𝑘 = (S𝑘 , Z𝑘) contains systematic
information about the request type. Here, S𝑘 represents the set of
nodes and Z𝑘 represents the set of edges in the graph. 4 For any
edge (𝑠𝑖 , 𝑠 𝑗) ∈ Z𝑘 , both 𝑠𝑖 and 𝑠 𝑗 belong to S𝑘 . The mathematical
formulation of the MCNF problem is as follows.
• The set of nodes S𝑘 . For each edge node 𝑠𝑖 ∈ S𝑘 , a set of
node attributes X𝑘

𝑖
= {𝑟𝑐,𝑘

𝑖,total, 𝑟
𝑐,𝑘
𝑖,ava, 𝑟

𝑚,𝑘

𝑖,total, 𝑟
𝑚,𝑘
𝑖,ava, 𝑡

𝑘
𝑖
} is defined

to provide systematic information about request type 𝑘 . 5 The
available CPU and total CPU (i.e., the sum of both available
and occupied CPU) of node 𝑠𝑖 are denoted by 𝑟

𝑐,𝑘
𝑖,ava and 𝑟

𝑐,𝑘

𝑖,total,
respectively. Similarly, the available memory and total memory
are represented by 𝑟𝑚,𝑘

𝑖,ava and 𝑟
𝑚,𝑘

𝑖,total, respectively. The supply and
demand relationship of node 𝑠𝑖 with respect to request type 𝑘 is
indicated by 𝑡𝑘

𝑖
. Specifically, when 𝑠𝑖 is a master node, it means

that the node has 𝑡𝑘
𝑖
pending requests (waiting in the scheduling

queue). On the other hand, when 𝑠𝑖 is a worker node, 𝑡𝑘𝑖 denotes
the node’s capacity to host |𝑡𝑘

𝑖
| requests (see Eq. 2). Here, 𝑟𝑐,𝑘

𝑖
and

𝑟
𝑚,𝑘
𝑖

are the minimum required CPU and memory for request
type 𝑘 , respectively. The values of 𝑟𝑐,𝑘

𝑖
and 𝑟𝑚,𝑘

𝑖
are dynamically

adjusted by the QoS re-assurance mechanism described in §4.3.

𝑡𝑘𝑖 = −min(rc, ki,ava/r
c,k
i , rm, k

i,ava/r
m,k
i) . (2)

• The set of edges Z𝑘 . For each edge (𝑠𝑖 , 𝑠 𝑗) ∈ Z𝑘 , a set of edge
attributesY𝑖, 𝑗 is defined asY𝑖, 𝑗 = {𝑡delay

𝑖, 𝑗
, 𝑐𝑖, 𝑗 }. Here, 𝑡delay𝑖, 𝑗

repre-
sents the transmission delay between edge nodes 𝑠𝑖 and 𝑠 𝑗 , while
𝑐𝑖, 𝑗 represents the transmission capacity between them.

5.2.2 Algorithm Design of DSS-LC.

The aim of the DSS-LC is to maximize the number of LC service
requests transmitted while minimizing the overall transmission
latency. Mathematically, we define the set of transmitted requests
as F . If 𝑏 𝑓

𝑖, 𝑗
=1, request 𝑓 is transmitted through (𝑠𝑖 , 𝑠 𝑗); otherwise,

𝑏
𝑓

𝑖, 𝑗
=0. Furthermore, we define F𝑖, 𝑗 as the set of all requests sent

from 𝑠𝑖 to 𝑠 𝑗 , 𝑓 as a request transmission stream, and 𝛾 𝑓 as the

4 Due to latency considerations, LC service requests can be dispatched to a local or
geo-nearby clusters for processing (within 500km of local in our production dataset).
5 The resources available for scheduling LC service requests are regulated in §4.1.

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Yicheng Feng et al.

Algorithm 2: Distributed LC service request scheduling (DSS-LC)

1 for each master node do in parallel
2 Place received LC requests into the LC scheduling queue;
3 if the LC scheduling queue is not empty then
4 for each LC request type 𝑘 ∈ K do in parallel
5 if

∑
𝑠𝑖 ∈S𝑘 𝑔 (𝑡𝑘𝑖) ≤ ∑

𝑠𝑖 ∈S𝑘 𝑔 (−𝑡𝑘𝑖) then
6 Get node attributes X𝑘

𝑖
and edge attributes Y𝑖,𝑗 to

construct the graph G𝑘 ;
7 Use the ortool to get the scheduling routing path;
8 if

∑
𝑠𝑖 ∈S𝑘 𝑔 (𝑡𝑘𝑖) >

∑
𝑠𝑖 ∈S𝑘 𝑔 (−𝑡𝑘𝑖) then

9 Requests are divided into R𝑘 and R′
𝑘
;

10 Get node attributes X𝑘
𝑖
and edge attributes Y𝑖,𝑗 ;

11 Construct graphs G𝑘 and Ĝ′
𝑘
, respectively;

12 Use the ortool to get scheduling routing path;
13 Forward requests to target nodes according to the

scheduling routing path;

resource requirements for 𝑓 . Thus, the optimization goal of DSS-LC
can be expressed as follows:

min
(𝑠𝑖 ,𝑠 𝑗)

max
𝑞𝑏,𝑡

∑︁
𝑓 ∈F

∑︁
(𝑠𝑖 ,𝑠 𝑗) ∈𝐸

𝑏
𝑓

𝑖, 𝑗
𝑡
delay
𝑖, 𝑗 (3)

s.t.
∑︁

𝑓 ∈F𝑖,𝑗

𝛾 𝑓 ≤ 𝑐𝑖,𝑗 , ∀(𝑠𝑖 , 𝑠 𝑗) ∈ Z𝑘 , (4)

∑︁
𝑓 ∈ F𝑚,𝑗 −

∑︁
𝑓 ′ ∈ F𝑗,𝑛 ≤ |𝑡𝑘𝑗 |, ∀(𝑠 𝑗) ∈ S𝑘 ,

∃(𝑠𝑚, 𝑠 𝑗) ∈ Z𝑘 , ∃(𝑠 𝑗 , 𝑠𝑛) ∈ Z𝑘 , if tkj ≤ 0,
(5)

∑︁
𝑓 ′ ∈ F𝑗,𝑛 −

∑︁
𝑓 ∈ F𝑚,𝑗 ≤ 𝑡𝑘𝑗 , ∀(𝑠 𝑗) ∈ S𝑘 ,

∃(𝑠𝑚, 𝑠 𝑗) ∈ Z𝑘 , ∃(𝑠 𝑗 , 𝑠𝑛) ∈ Z𝑘 , if tkj > 0,
(6)

where Eq.4 ensures that the sum of requests transmitted cannot
exceed the upper limit, Eq.5 ensures that the number of requests re-
ceived by each node cannot exceed its processing capacity, and Eq.6
means that the number of requests sent by each node is expected
to be no more than the sum of initially owned and the number of
received. We focus on the fundamental variables and constraints to
maintain brevity. However, in practice, different traffic engineering
system requirements and routing protocols (e.g., MPLS tunneling
selection, OSPF) can be incorporated into the problem formulation.

The DSS-LC algorithm handles requests of each type 𝑘 ∈ K in
two cases. The first case arises when

∑
𝑠𝑖 ∈S𝑘 𝑡𝑘𝑖 ≤ 0, which means

that the number of pending requests is no more than the number
that can be processed, i.e., the target scheduling node has the ca-
pacity to execute these requests. In this case, DSS-LC constructs the
graph G𝑘 as described in §5.2.1 and uses Ortools [7] as a solver to
determine the scheduling routing path for each LC service request.

On the other hand, if
∑
𝑠𝑖 ∈S𝑘 𝑡𝑘𝑖 > 0, it means that the total

number of pending requests has exceeded the capacity of nodes to
process them. In such a situation, DSS-LC uses the random sorting
function 𝜌 (·) to divide the requests into two groups: R𝑘 , which
are expected to be processed immediately, and R′

𝑘
, which must be

queued. Note that the priority policy of 𝜌 (·) can be changed as
required (LC services are of the same priority as each other in our
scenario). Consequently, the graphs G𝑘 and Ĝ′

𝑘
are constructed,

respectively. The graph G𝑘 is constructed based on R𝑘 , and the
routing solutions are obtained usingOrtool, as in the first case. How-
ever, for graph Ĝ′

𝑘
, DSS-LC takes into account the total resources

of edge nodes to construct it while considering the heterogeneous
nature of edges, as shown in Eq. 7:

𝑡 ′
𝑖,𝑘

= −min(rc, ki,total/r
c,k
i , rm, k

i,total/r
m,k
i) · _, (7)

where _ is the augmentation factor which guarantees that the total
number of requests in the graph Ĝ′

𝑘
matches the number in the set

R′
𝑘
as shown in Eq. 8:

_ =

∑
𝑠𝑖 ∈S𝑘 𝑡𝑘𝑖∑

𝑠𝑖 ∈S𝑘 min(rc,ki,total/r
c,k
i , rm,k

i,total/r
m,k
i)

(8)

After constructing G𝑘 and Ĝ′
𝑘
, DSS-LC dispatches all requests by

following the routing path generated by Ortool.

5.3 Request Scheduling of BE Services
We choose to use centralized scheduling for BE service requests
because (1) these requests do not have strict QoS targets, allowing
for an additional transfer to the central edge-cloud cluster; and
(2) scheduling decisions based on the global state information of
the edge-cloud system are more comprehensive than those for LC
service requests, which are limited to geo-nearby clusters. This
approach also helps to reduce decision conflicts.

Centralized scheduling of BE service requests, however, poses
two challenges. First, the approach must handle the large-scale
dynamic network topology and minimize its impact on system
performance. Second, scheduling decisions must be optimized for
long-term throughput rather than a single moment. To address
these challenges, we propose a Deep reinforcement learning
Customized algorithm based on Graph neural network for
centralized BE requests scheduling (DCG-BE). As illustrated
in Figure 7 and Alg. 3, DCG-BE utilizes graph representation learn-
ing [16] with a Graph Neural Network (GNN) to encode the large-
scale network topology for the first challenge, 6 and employs Deep
Reinforcement Learning (DRL) to obtain the scheduling routing
path for the second challenge.

eAP

Master
node

Worker
node

𝒮′, ℰ′

Actor network

Critic network

A
d

v
a

n
ta

g
e

Modeled as
a graph

Edge-
clouds

Reward

Action

Sampling the neighbors – e.g. p=3

l=1

l=2

Aggregate feature information

l=2

l=1
Features

aggregated
after l=1

Ignore
neighbors

more than p

DRL Customized algorithm based on GNN for BE requests (DCG-BE)

Figure 7: Centralized BE service request scheduling.

6 In our problem, GNNs outperform other graph representations based on sequences
(e.g., recurrent neural networks) because GNNs remove the dependence on the order
in which nodes are presented in the input [44].

Tango: Harmonious Management and Scheduling for Mixed Services Co-located among Distributed Edge-Clouds ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

5.3.1 Markov Game Formulation.

DCG-BE maintains a global graph G′ = (S′, Z ′), where S′ and
Z ′ represent the sets of nodes and edges, respectively. We formalize
the scheduling problem of BE service requests as a Markov game
M = (T ,A,P,R), as shown below:
• State T . The state of node 𝑠𝑖 includes the following parame-
ters: available CPU 𝑟

𝑐,ava
𝑖

, available memory 𝑟
𝑚,ava
𝑖

, total CPU
𝑟
𝑐,total
𝑖

, total memory 𝑟𝑚,total
𝑖

, current slack score 𝛿𝑘 (mentioned
in §4.3), CPU requirement of the BE request 𝑟𝑐,be

𝑖
, and memory

requirement 𝑟𝑚,be
𝑖

. Similarly, the state of edge (𝑠𝑖 , 𝑠 𝑗) includes
the transmission latency 𝑡delay

𝑖, 𝑗
(between node 𝑠𝑖 and 𝑠 𝑗) and the

requested transmission capacity 𝑐𝑖, 𝑗 .
• Action A. The action of DCG-BE at time 𝑡 is defined as 𝑎𝑡 ∈
1, 2, . . . , 𝑁 , specifying the target node to which the request should
be forwarded. And 𝑁 denotes the number of nodes in the set S′.

• State transition probability P. DCG-BE employs the function
𝑝 (𝒔𝑡+1 | 𝒔𝑡 , 𝒂𝑡) : S′×A×S′ → [0, 1] to represent the probability
of executing the scheduling decision 𝒂𝑡 and transitioning from
state 𝒔𝑡 to state 𝒔𝑡+1.

• RewardR.A comprehensive reward is designed to consider both
short-term and long-term availability of resources to improve long-
term throughput and ensure load balancing at the edge. The reward
function is defined as 𝑟𝑡 = 𝑟 short𝑡 +[·𝑟 long𝑡 , where[is a weight used
to adjust the relative importance of the short-term and long-term
rewards. Empirically, we set[to 1. The short-term reward 𝑟 short𝑡 is

defined as 𝑟 short𝑡 = 𝑒
−max(∑q∈Qt,i r

c
q/rc,nodei ,

∑
q∈Qt,irmq /rm,node

i) , where
𝑒 is the Euler number, Q𝑡,𝑖 is the set of BE service requests wait-
ing to be processed in node 𝑠𝑖 at time 𝑡 , 𝑟𝑐𝑞 and 𝑟𝑚𝑞 denote the
CPU and memory requirements of BE request 𝑞, and 𝑟

𝑐,node
𝑖

and 𝑟
𝑚,node
𝑖

denote the CPU and memory resources available
on node 𝑠𝑖 . The long-term reward 𝑟

long
𝑡 is defined as 𝑟 long𝑡 =

1 − 𝑒
−∑�̂�

𝑖=0
∑

𝑞′ ∈Q′
𝑡,𝑖

(𝑟𝑐
𝑞′ /𝑟

𝑐,node
𝑖

+𝑟𝑚
𝑞′ /𝑟

𝑚,node
𝑖

)
, where �̂� is the number

of actions between two training intervals and Q′
𝑡,𝑖

is the set of
BE service requests completed in node 𝑠𝑖 at time 𝑡 .

5.3.2 Algorithm Design of DCG-BE.

GNN-Based network topology Encoding. We utilize a Graph-
SAGE network (Graph SAmple and aggreGatE) [18] to encode the
large-scale network topology and create a graph embedding. Graph-
SAGE offers an inductive representation learning approach that is
advantageous for large-scale graphs and is better suited to adjust to
changes in topology [18]. The GraphSAGE network includes two
primary steps: sampling and aggregation.
• Sampling. In the sampling step, a fixed number of samples 𝑝 is
set for each node 𝑠𝑖 ∈ S′ to improve computational efficiency. For
each 𝑠𝑖 , we perform sampling between neighboring nodes based
on the indicator function ℎ(𝑠𝑖 , 𝑠 𝑗), which is set to 1 if (𝑠𝑖 , 𝑠 𝑗) ∈ Z ′

(Z ′ is the set of edges) and 0 otherwise. To select 𝑝 neighbors for
𝑠𝑖 , we check if

∑
𝑠 𝑗 ∈S′ ℎ(𝑠𝑖 , 𝑠 𝑗) ≤ 𝑝 ; if not, we perform sampling

without replacement after selecting 𝑝 neighbor nodes. We define
the set of neighboring nodes for node 𝑠𝑖 as N(𝑠𝑖).

• Aggregation. After selecting the neighboring nodes, the node
aggregation is performed. Let 𝑙 ∈ {0, 1, . . . , 𝐿 − 1} represent the

Algorithm 3: Intelligent BE service request scheduling (DCG-BE)

1 Initialize global parameters for central cluster;
2 if the BE scheduling queue is not empty then
3 for each BE service request do in parallel
4 Constructing the global graph G′;
5 for the index of aggregation 𝑙 < 𝐿 do
6 Sampling 𝑝 neighbors for each node;
7 Compute the vector v𝑙+1

𝑖
based on Eq. 9;

8 Compute �̂� (�̂�𝑡) and obtain the action 𝑎𝑡 ;
9 Execute the action 𝑎𝑡 to get reward 𝑟𝑡 ;

10 if the required number of samples are collected then
11 Train and update parameters;

index for the aggregation count, where we set the total aggregation
count 𝐿 = 2. We define the vector of node 𝑠𝑖 at the 𝑙-th aggregation
as 𝑣𝑙

𝑖
. The aggregation method can be expressed as follows:

v𝑙+1𝑖 = 𝜎 (W ·MEAN(v𝑙𝑖 ∪ {v𝑙𝑗 ,∀𝑠 𝑗 ∈ N (𝑠𝑖)})), (9)

whereW is the training weight parameter and 𝜎 (·) is the activation
function.
DRL-Based Centralized Scheduling. DCG-BE utilizes the Advan-
tage Actor-Critic (A2C) algorithm [1] for its DRL part, consisting of
an actor and a critic. The GNN resulting embedding vector, which
captures the essential features of the topology, serves as the input
for the actor. Based on this input, the actor generates a decision
action 𝑎𝑡 , while the critic evaluates the actor’s decision. As detailed
in §5.3.1, the action in DCG-BE is defined as the target node for
which the BE service request should be scheduled. For requests
that have reached the target node but cannot be processed in a
timely manner, they will be returned to the scheduling queue for
rescheduling.

To ensure the effectiveness of the action, we design a policy
context filtering mechanism to filter out unavailable nodes. We
define 𝒄𝑡 ∈ {0, 1}𝑁 to denote the validity of the scheduling decision.
If the available resources of node 𝑠𝑖 , i.e., (𝑟𝑐,ava𝑖

, 𝑟
𝑚,ava
𝑖

) cannot
satisfy request requirements, then 𝒄𝑡 = 0, otherwise 𝒄𝑡 = 1. Next,
we define 𝒑 (𝒔𝑡) as the original output logits of the neural network
based on the state 𝒔𝑡 . We then use 𝒑 (𝒔𝑡) = 𝒑 (𝒔𝑡) ∗ 𝒄𝑡 as the valid
output logits, where * denotes element-wise multiplication. This
ensures the validity of the output actions made by DCG-BE. In
terms of implementation, both the actor and critic networks use a
three-layer ReLU NN with 256, 128, and 32 hidden units per layer.
The Adam optimizer with a fixed learning rate of 2 × 10−4 is used.

6 IMPLEMENTATION
Wedevelop a Tango prototype, which comprises approximately 5000
lines of Python code. Tango is built on Ubuntu 20.04.3 LTS with
Linux kernel v5.3.0-28, and it extends on K8s v1.21.0 by utilizing the
K8s-SDK [4]. The DCG-BE algorithm is implemented using PyTorch
1.11.0. In order to emulate a realistic edge-cloud environment, we
control the network bandwidth and the round-trip time (RTT) using
the Linux Traffic Control tool, based on latency and geographic
distribution information from the production dataset.

Note that Tango is designed with a strong emphasis on asyn-
chrony and parallelism. We employ the multiprocessing, Thread-
PoolExecutor, and Lock modules to enable the system to handle high

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Yicheng Feng et al.

Physical space of 4 realistic edge-cloud clusters

Physical K8s edge clouds
(1 cluster= 1 master + 4 workers)

K8s API behavior-level

simulation of edge clouds
(1 cluster= 1 master + [3-20] workers)

Edge cloud

Process

…… …… ……
Edge-cloud

Process

……

…

Twin space of 100 simulated edge-cloud clusters

Inter-activities with standard K8s API

Node

Request

Master

Agent
… …

C
la

ss Sent req.

Sync status

Receive req.

Dispatch decision

… …

T
h

re
a

d

R
eq

u
es

t
G

en
er

a
to

r
d

ri
v

en
 b

y
 2

0
1

9
 G

o
o

g
le

 c
lu

st
er

-d
a

ta

(8
.0

8
G

B
 o

f
ra

w
 d

at
a,

 1
0

 t
y

p
es

 o
f

L
C

 a
n

d
 B

E
 s

er
v

ic
es

)

Figure 8: The dual-space edge-cloud experimental system
with hundreds of mixed physical and virtual edge-clouds.

request-per-second (RPS) rates. Specifically, we have modularly
subdivided Tango’s important functions, each of which is assigned
to a corresponding process or thread pool, thereby avoiding the
global interpreter lock (GIL) issue in Python.

6.1 Dual-Space Edge-Cloud System
A dual-space edge-cloud experimental system is illustrated in Fig-
ure 8. It comprises of four physical edge-cloud clusters, each com-
posed of four worker nodes (with 4 CPUs and 8GB RAM) and one
master node (with 8 CPUs and 16GB RAM). Additionally, we create
a further 100 virtual edge-cloud clusters, supported by two servers,
each with 64 vCPUs and 128GB RAM, in the simulation environ-
ment. To better reflect the heterogeneity of the edge, each virtual
edge-cloud cluster consists of 3-20 virtual worker nodes represented
as class objects, with a total of 1000 nodes.

For each virtual edge-cloud cluster, we create a system process
to manage the lifecycle of requests. The virtual edge-clouds have
the same logical operations as the physical edge-clouds but do
not have physical container instances. To map the time taken to
process requests in the simulation environment, we record the time
taken for each type of service to complete under different loads and
resources through pressure testing in the physical environment. We
set an update thread for each virtual worker node, which wakes up
periodically (every 100ms), to update and synchronize the current
container resource status and the progress of request processing
maintained in the form of a dictionary. Both physical and virtual
edge-cloud clusters communicate through a TCP connection with
a unified format for input and output.

6.2 Services and Workload Traces
The workload trace from the 2019 Google cluster-data [2] is selected
for our experiments. We extract records with the fields <EventType,
SCHEDULE> and <CollectionType, JOB> from the dataset. The
field "LatencySensitivity" is used to classify service types into 10 cat-
egories of LC and BE services. Each application is instantiated in a
single container, and the expected resource allocation or QoS target
(tail latency) is determined based on network transfer latency and
service pressure measurement, leveraging methods mentioned in

PARTIES [14]. Furthermore, we use one server as a request generator
to send LC or BE service requests. In §7, we run each experiment
five times, and each period in figures represents 800ms, which is
the frequency at which we collect data.

7 EVALUATION
In the evaluation, we aim to answer the following questions:
• How does HRM perform when handling various loads (§7.1)?
• How doTango’s two scheduling algorithms perform (§7.2)?
• Can Tango adapt to system scale expansion, and how does its
performance compare to other state-of-the-art approaches under
real workload traces (§7.3)?

7.1 HRM Effectiveness
First, we compare the performance of K8s with Tango’s HRM and
K8s-native. We prepare three workloads with different character-
istics (see Figure 9(a)): (i) pattern P1, which periodically sends LC
service requests and randomly sends BE service requests; (ii) pat-
tern P2, which periodically sends BE service requests and randomly
sends LC service requests; (iii) pattern P3, in which both types of
requests are sent randomly. We use the default policy of K8s as the
scheduling algorithm for LC and BE service requests. We initialize
the resource allocation limits of services for K8s-native according
to the total resource usage ratio in the trace. Due to the flexibility
of D-VPA, Tango does not need to be bound to a fixed allocation
scheme. We conduct experiments on physical edge-cloud clusters.

As shown in Figure 9, HRM efficiently manages edge-cloud re-
sources: when LC service workload is low, BE service fully utilizes
the nodes’ free resources (pattern P1); when LC service workload
fluctuates significantly, HRM quickly and resiliently adjusts re-
source allocation (patterns P2 and P3). Overall, HRM effectively
improves edge-cloud resource utilization (Figure 9(d)). In contrast,
K8s-native cannot efficiently coordinate mixed services’ resource
utilization under different workloads due to fixed allocation and
unordered competition (Figure 9(c)). We test D-VPA for average
time taken to perform a single scaling operation, which is found to
be 23ms. This represents a significant reduction in time compared

60

40

20

0

100

75

50

25

R
es

ou
rc

e
ut

ili
za

tio
n

(%
)

0

200

400

Th
e

nu
m

be
r o

f
re

qu
es

ts

Pattern Pattern Pattern

（c
）

0

0 200 400 600 800 1000 1200
Index of period

O
ve

ra
ll

 re
so

ur
ce

ut

ili
za

tio
n

(%
)

0.3

0.5

0.7

0.9

（d
）With HRM Without HRM

（（bb））

（（aa））

（（cc））

（（dd））
BE servicesLC services

Harmonious allocation： LC
services preempt resources when

necessary

Turbulent allocation：Without
HRM，LC services fail to acquire

sufficient resources

K8s with HRM

K8s-native

Figure 9: Three different requests workload patterns (a); the
resource utilization of mixed services (b, c); comparison of
the overall resource utilization (d).

Tango: Harmonious Management and Scheduling for Mixed Services Co-located among Distributed Edge-Clouds ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Pattern Pattern PatternN
or

m
al

iz
ed

 Q
oS

-g
ua

ra
nt

ee

sa
tis

fa
ct

io
n

ra
te

 o
f L

C
 /

th
ro

ug
hp

ut
 o

f B
E

LC services without re-assurance

LC services with re-assurance
BE services with re-assurance

BE services without re-assurance

Figure 10: The performance of QoS-guarantee satisfaction
rate and the throughput under three workload patterns.
to the delete-and-rebuild approach, by a factor of approximately
100 times. Note that this operation does not interrupt the running
containers. We further verify the effectiveness of QoS re-assurance
mechanism. Figure 10 shows that the QoS re-assurance mechanism
effectively optimizes the system objective.

7.2 Scheduling Algorithm Performance
Based on the workload traces, we validate the scheduling algo-
rithms’ performance on physical edge-clouds.
Scheduling Algorithm for LC Service Requests. We compare
DSS-LC against three other scheduling algorithms: (i) load-greedy,
which schedules requests to the node with the lowest load, (ii)
K8s-native [9], the state-of-the-art default strategy used by K8s,
and (iii) scoring [42], a weighted score algorithm that takes into
account statuses such as resource usage and transmission latency.
Additionally, we choose (ii) as the scheduling strategy for BE service
requests. We consider three metrics for performance evaluation:
QoS-guarantee satisfaction rate, tail latency (95𝑡ℎ percentile) of
completed requests, and the number of abandoned requests.

Figure 11(a, b) illustrates that DSS-LC outperforms all other
scheduling algorithms on all three metrics. The superiority of DSS-
LC can be attributed to its construction of a graph structure data
through classification, which integrates and optimizes the routing
and forwarding of requests and queuing delays. Furthermore, DSS-
LC exhibits the best stability in terms of QoS-guarantee satisfaction
rate, indicating that the strategy effectively copes with fluctuating
loads. DSS-LC is also ideal for timely performance, with a re-
sponse time of 1.99ms for a node size of 500 and 3.98ms for a node
size of 1000, which is less than 2% of the QoS target.
SchedulingAlgorithm for BE Service Requests. To evaluate the
performance ofDCG-BE, we conduct a comparative analysis against
several approaches, including (i) GNN-SAC, an improved GNN-
based learning algorithm that builds on the success of SAC [17];
(ii) load-greedy; and (iii) K8s-native, both of which are aforemen-
tioned. Similarly, We employ K8s-native as the scheduling strategy
for LC service requests.

Figure 11(c) shows that all three inter-cluster scheduling algo-
rithms outperform K8s-native by effectively utilizing system re-
sources. Among them, DCG-BE and GNN-SAC optimize long-term
throughput through global objective optimization. While GNN-SAC
has strong exploration ability, it struggles to calculate strategy dif-
ferences. In contrast, DCG-BE compares differences through online
learning with the dominance function mechanism, leading to bet-
ter performance. DCG-BE achieves 9.3% higher throughput than
GNN-SAC. Tango’s DCG-BE employs GraphSAGE to encode the
large-scale network topology. We compare different GNN struc-
tures and find that GraphSAGE achieves the best performance by
efficiently capturing essential topology features through inductive
representation learning, as shown in Figure 11(d).

0
0.0

0.7
0.6
0.5
0.4
0.3
0.2
0.1

Index of period

0.80

0.95

0.90

0.85

0 40050 100 150 200 250 300 350

N
or

m
al

iz
ed

 L
C

 Q
oS

-
gu

ar
an

te
e

sa
tis

fa
ct

io
n

ra
te

Index of period
0.0

1.0

0.8

0.6

0.4

0.2

Average
latency

The number of
abandoned requests

N
or

m
al

iz
ed

 v
al

ue

N
or

m
al

iz
ed

 B
E

th
ro

ug
hp

ut

0 40050 100 150 200 250 300 350
Index of period

0.90

0.80

0.70

0.60

0.50

N
or

m
al

iz
ed

 B
E

th
ro

ug
hp

ut

K8s-native DSS-LCScoringLoad-greedy

0.40 DCG-BEK8s-nativeGNN-SAC Load-greedy
2000 3000 40001000

GAT-A2C
GCN-A2C
GraphSAGE-A2C
Native-A2C

Load-greedy
K8s-native

Scoring
DSS-LC

（（aa））

（（cc））

（（bb））

（（dd））

Figure 11: The comparison of DSS-LC with other algorithms
in three metrics of LC services (a, b); the comparison of DCG-
BE with others (c); the performance of DCG-BE to respond to
different GNN structures (d).

7.3 Large-Scale Edge-Clouds Validation
Based on workload traces, we evaluate Tango in the large-scale
hybrid (dual-space) edge-clouds which is described in §6.1.
Algorithm Pairing Analysis. We test different scheduling algo-
rithm pairs under the same workload (Figure 12). When combined
with any BE scheduling algorithm,DSS-LC outperforms others with
approximately 8.2% higher rate of QoS-guarantee satisfaction. LC
services are less affected by changes in BE scheduling policy due to
HRM. However, the throughput of BE services significantly changes
with LC scheduling policy. Among the LC scheduling algorithm
combinations, DCG-BE achieves the best throughput performance.
Moreover, when paired with DSS-LC, DCG-BE learns the most effi-
cient scheduling strategy, surpassing the closest competitor (DCG-
BE with K8s-native) by 5.9%. Thus, DSS-LC and DCG-BE form the
optimal algorithm combination for Tango.

1.00

0.65

0.95

0.90

0.85

0.80

0.75

0.70

K8s-nativeDSS-LC Scoring Load-greedy

DCG K8s-native
GNN-SAC Load-greedy

K8s-nativeDSS-LC Scoring Load-greedy
Algorithms for LC requests

Algorithms for BE services

DCG GNN-SAC
K8s-native Load-greedy

Algorithms for BE services

N
or

m
al

iz
ed

 v
al

ue

QoS-guarantee satisfaction rate of LC requests Throughput of BE requests

DCG-BE K8s-native
GNN-SAC Load-greedy

Algorithms for BE requests
DCG-BE GNN-SAC
K8s-native Load-greedy
Algorithms for BE requests（（aa）） （（bb））

Figure 12: The QoS-guarantee satisfaction rate (a) and
throughput (b) with combinations of scheduling algorithms.

State-of-the-Art Approach Comparison. We compare Tango
to two state-of-the-art approaches: (i) CERES [40], a container-
based elastic resource management system and (ii) DSACO [34],
a distributed scheduling framework for edge computing based on
SAC. CERES only provides a local resource management scheme,
which cannot effectively utilize distributed and heterogeneous edge
resources. Similarly, DSACO only provides an edge-oriented sched-
uling scheme, which cannot effectively manage resource allocation
for mixed workloads. As shown in Figure 13, unlike CERES and
DSACO, Tango can efficiently manage resources while scheduling
mixed loads, leading to improved resource utilization. Specifically,
Tango outperforms CERES by 36.9% in terms of resource utiliza-
tion. Even though DSACO uses a intelligent distributed scheduling

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Yicheng Feng et al.

0.0

1.0

0.5

0.8

1.0

0.9

Th
e

nu
m

be
r o

f
re

qu
es

ts
R

es
ou

rc
e

ut
ili

za
tio

n
(%

)
N

or
m

al
iz

ed
 Q

oS
-g

ua
ra

nt
ee

sa

tis
fa

ct
io

n
ra

te
 o

f L
C

N

or
m

al
iz

ed

th
ro

ug
hp

ut
 o

f B
E

0

90

45

90

45

0

90

45

90

45

LC services BE services

LC services BE services

0 20025 50 75 100 125 150 175

CERES Tango

（（ee））

（（ff））

Index of period

（（aa
））

（（cc））

（（dd））

75

25

50

0

100

Tango

Better and more
stable performance

High resource utilization with flexibility

Poor resource utilization with inflexibility

More intelligent
adaptive optimization

0

90

45

90

45
LC services BE services

（（bb））

DSACO

CERES

DSACO

（（aa））

Figure 13: Comparing resource utilization (b, c, d), QoS-
guarantee satisfaction rate (e), and long-term throughput
(f) in large-scale hybrid clusters (a).

approach, Tango’s DSS-LC with HRM support improves the QoS-
guarantee satisfaction rate by 11.3% over DSACO. By incorporating
DCG-BE with HRM, Tango achieves effective long-term throughput
optimization over CERES by 47.6%.

8 CONCLUSION
In this paper, we have introduced Tango, a framework for managing
and scheduling mixed services in K8s-based edge-cloud systems.
Tango incorporates components, mechanisms, and two traffic sched-
uling algorithms to manage distributed resources. Our experiments
have demonstrated that Tango dispatches BE requests while ensur-
ing QoS for LC requests. Compared to state-of-the-art approaches,
Tango improves resource utilization by 36.9%, QoS-guarantee satis-
faction rate by 11.3%, and long-term throughput by 47.6%.

ACKNOWLEDGMENTS
This work was sponsored by the National Science Foundation of
China under Grant No. 62072332, the China NSFC (Youth) through
Grant No. 62002260, the Tianjin Xinchuang Haihe Lab under Grant
No. 22HHXCJC00002, the Guangdong Pearl River Talent Recruit-
ment Program under Grant No.2019ZT08X603, and the Guangdong
Pearl River Talent Plan under Grant No. 2019JC01X235.

REFERENCES
[1] 2019. A2C. https://github.com/openai/baselines/tree/master/baselines/a2c
[2] 2021. Google data. https://github.com/google/cluster-data
[3] 2023. K8s-HorizontalPodAutoscaler. https://kubernetes.io/docs/reference/

kubernetes-api/workload-resources/horizontal-pod-autoscaler-v1/
[4] 2023. K8s-SDK. https://https://github.com/kubernetes-client/
[5] 2023. Koordinator. https://github.com/koordinator-sh/koordinator
[6] 2023. Kubernetes. https://github.com/kubernetes/kubernetes

[7] 2023. Ortools. https://developers.google.com/optimization/
[8] 2023. Prometheus. https://github.com/prometheus/prometheus
[9] 2023. scheduler. https://kubernetes.io/docs/concepts/services-networking/
[10] 2023. Swarm. https://docs.docker.com/engine/swarm
[11] 2023. VPA. https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-

autoscaler
[12] Pradeep Ambati et al. 2019. Optimizing the cost of executing mixed interactive

and batch workloads on transient vms. POMACS 3, 2 (2019), 1–24.
[13] Jun Lin Chen et al. 2022. Starlight: Fast Container Provisioning on the Edge and

over the WAN. In USENIX NSDI.
[14] Shuang Chen et al. 2019. Parties: Qos-aware resource partitioning for multiple

interactive services. In ASPLOS.
[15] Daniel E Eisenbud et al. 2016. Maglev: A fast and reliable software network load

balancer. In USENIX NSDI. 523–535.
[16] Matthias Fey et al. 2019. Fast graph representation learning with PyTorch Geo-

metric. arXiv preprint arXiv:1903.02428 (2019).
[17] Fujimoto et al. 2018. Addressing function approximation error in actor-critic

methods. In ICML. 1587–1596.
[18] Will Hamilton et al. 2017. Inductive representation learning on large graphs.

Adv. Neural Inf. Process Syst. 30 (2017).
[19] Rui Han et al. 2022. EdgeTuner: Fast Scheduling Algorithm Tuning for Dynamic

Edge-Cloud Workloads and Resources. In IEEE INFOCOM.
[20] Yiwen Han et al. 2021. Tailored learning-based scheduling for kubernetes-

oriented edge-cloud system. In IEEE INFOCOM.
[21] Benjamin Hindman et al. 2011. Mesos: A Platform for {Fine-Grained} Resource

Sharing in the Data Center. In USENIX NSDI.
[22] Lei Huang et al. 2022. Towards Elasticity in Heterogeneous Edge-dense Environ-

ments. In IEEE ICDCS. 403–413.
[23] Yinzhi Lu et al. 2022. An Intelligent Deterministic Scheduling Method for Ultra-

Low Latency Communication in Edge Enabled Industrial Internet of Things. IEEE
Trans. Industr. Inform. (2022).

[24] Quyuan Luo et al. 2021. Resource scheduling in edge computing: A survey. IEEE
Commun. Surv. Tutor. 23, 4 (2021), 2131–2165.

[25] Seyed Hossein Mortazavi et al. 2017. Cloudpath: A multi-tier cloud computing
framework. In ACM/IEEE SEC. 1–13.

[26] Yoonsung Nam, Yongjun Choi, Byeonghun Yoo, Hyeonsang Eom, and Yongseok
Son. 2020. EdgeIso: Effective Performance Isolation for Edge Devices. In IEEE
IPDPS. 295–305.

[27] Rajiv Nishtala et al. 2020. Twig: Multi-agent task management for colocated
latency-critical cloud services. In IEEE HPCA. 167–179.

[28] Parveen Patel et al. 2013. Ananta: Cloud scale load balancing. ACM Comput.
Commun. Rev. (2013).

[29] Drew Penney et al. 2022. PROMPT: Learning Dynamic Resource Allocation
Policies for Edge-Network Applications. arXiv:2201.07916 (2022).

[30] Ju Ren et al. 2019. A survey on end-edge-cloud orchestrated network computing
paradigms: Transparent computing, mobile edge computing, fog computing, and
cloudlet. ACM CSUR (2019).

[31] Shihao Shen et al. 2022. EdgeMatrix: A Resource-Redefined Scheduling Frame-
work for SLA-Guaranteed Multi-Tier Edge-Cloud Computing Systems. IEEE
JSAC (2022).

[32] Weisong Shi et al. 2016. Edge computing: Vision and challenges. (2016).
[33] Weisong Shi et al. 2016. Edge computing: Vision and challenges. IEEE Internet

Things J. 3, 5 (2016), 637–646.
[34] Chuan Sun et al. 2021. Cooperative computation offloading for multi-access edge

computing in 6G mobile networks via soft actor critic. IEEE TNSE (2021).
[35] Jianhang Tang et al. 2022. Latency-Aware Task Scheduling in Software-Defined

Edge and Cloud Computing with Erasure-Coded Storage Systems. IEEE Trans.
on Cloud Comput. (Early Access) (2022).

[36] Abhishek Verma et al. 2015. Large-scale cluster management at Google with
Borg. In ACM EuroSys. 1–17.

[37] Jianyu Wang et al. 2019. Edge cloud offloading algorithms: Issues, methods, and
perspectives. ACM CSUR 52, 1 (2019), 1–23.

[38] Xiaofei Wang et al. 2022. Integrating edge intelligence and blockchain: What,
why, and how. IEEE COMST (2022).

[39] Mengwei Xu et al. 2021. From cloud to edge: a first look at public edge platforms.
In ACM IMC. 37–53.

[40] Jinyu Yu et al. 2021. CERES: Container-Based Elastic Resource Management
System for Mixed Workloads. In ICPP. 1–10.

[41] Ke Zhang et al. 2017. Mobile-edge computing for vehicular networks: A promising
network paradigm with predictive off-loading. IEEE Veh. Technol. Mag. (2017).

[42] Yunqi Zhang et al. 2016. History-Based Harvesting of Spare Cycles and Storage
in Large-Scale Datacenters. In OSDI.

[43] Zhiheng Zhong et al. 2020. A cost-efficient container orchestration strategy in
kubernetes-based cloud computing infrastructures with heterogeneous resources.
ACMTOIT 20, 2 (2020), 1–24.

[44] Hang Zhu et al. 2021. Network planning with deep reinforcement learning. In
ACM SIGCOMM Conference.

https://github.com/openai/baselines/tree/master/baselines/a2c
https://github.com/google/cluster-data
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/horizontal-pod-autoscaler-v1/
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/horizontal-pod-autoscaler-v1/
https://https://github.com/kubernetes-client/
https://github.com/koordinator-sh/koordinator
https://github.com/kubernetes/kubernetes
https://developers.google.com/optimization/
https://github.com/prometheus/prometheus
https://kubernetes.io/docs/concepts/services-networking/
https://docs.docker.com/engine/swarm
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler

	Abstract
	1 INTRODUCTION
	2 BACKGROUND AND RELATED WORK
	2.1 Container Orchestration Platforms
	2.2 Resource Allocation
	2.3 Computation Offloading

	3 TANGO OVERVIEW
	4 DESIGN OF HRM
	4.1 Resource Usage Regulations
	4.2 D-VPA Component
	4.3 QoS Re-Assurance Mechanism

	5 DESIGN OF SCHEDULING ALGORITHMS
	5.1 Problem Formulation
	5.2 Request Scheduling of LC Services
	5.3 Request Scheduling of BE Services

	6 Implementation
	6.1 Dual-Space Edge-Cloud System
	6.2 Services and Workload Traces

	7 Evaluation
	7.1 HRM Effectiveness
	7.2 Scheduling Algorithm Performance
	7.3 Large-Scale Edge-Clouds Validation

	8 Conclusion
	Acknowledgments
	References

